Synthesis of a Core Carbon Framework of Cyanosporasides A and B

Daisuke Aburano, Fuyuhiko Inagaki, Shoichirou Tomonaga, and Chisato Mukai*
Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
cmukai@kenroku.kanazawa-u.ac.jp

Received May 28, 2009

Treatment of 3-(2-ethynylphenyl)prop-2-ynyl benzenesulfinate with $2.5 \mathrm{~mol} \%$ of $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ at $40{ }^{\circ} \mathrm{C}$ under an atmosphere of CO effected the successive 2,3-sigmatropic rearrangement and carbonylative $[2+2+1]$ ring-closing reaction to afford the 8 -(phenylsulfonyl)-1H-cyclopent $[a]$ -inden-2-one in a high yield. Chemical modification of the ring-closed product via lipase-mediated optical resolution produced the optically active 3-acetoxy-3a-cyclohexyloxy-3,3a-dihydrocyclopent[a]indene skeleton, the core carbon framework of cyanosporasides A and B.

Introduction

In 2006, Fenical and co-workers ${ }^{1}$ reported the isolation of two structurally novel cyclopent[a]indene glycosides, cyanosporasides A (1) and B (2), from Salinispora pacifica collected at a depth of 500 m in Palau. Cyanosporides A (1) and B (2) have an intriguing novel common structural feature with the 3,3a-dihydrocyclopent $[a]$ indene carbon framework as the aglycon moiety as well as a novel 3^{\prime}-oxo- 4^{\prime} -methyl- β-fucopyranose as the sugar part. Their biological activity is still uncertain except for the weak cytotoxicity of 1 against human colon carcinoma HCT-116.

We have recently been involved in the investigation of the $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ - or $[\mathrm{RhCl}(\mathrm{CO}) \mathrm{dppp}]_{2}$-catalyzed intramolecular carbonylative $[2+2+1]$ ring-closing reaction (Pauson-Khand-type reaction) of phenylsulfonylallenynes, ${ }^{2}$ phenylsulfonylallenenes, ${ }^{3}$ and bis(phenylsulfonylallene) derivatives ${ }^{4}$

[^0]
cyanosporaside $A: R^{1}=C l, R^{2}=H$ (1)
cyanosporaside $\mathrm{B}: \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Cl}$ (2)
FIGURE 1. Structure of cyanosporasides.
leading to the efficient formation of bicyclo[m.3.0] skeletons ($m=4-6$) (Scheme 1). As an extension of our work in this field, we have focused on the synthesis of the carbon framework $\mathbf{3}$ of cyanosporasides A (1) and B (2) by taking advantage of the $\mathrm{Rh}(\mathrm{I})$-catalyzed carbonylative $[2+2+1]$ ring-closing reaction of phenylsulfonylallenynes.

Results and Discussion

A year before the isolation of $\mathbf{1}$ and $\mathbf{2}$, Liu and Datta ${ }^{5}$ developed the efficient synthesis (82%) of $1 H$-cyclopent $[a]$ -inden-2-one (5) from 1-ethynyl-2-(1,2-propadienyl)benzene (4) through the $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}$-mediated carbonylative $[2+2+1]$ ring-closing reaction at $25^{\circ} \mathrm{C}$ in a stoichiometric manner. They also reported the catalytic version of that transformation in the presence of $5 \mathrm{~mol} \%$ of $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$
(5) Datta, S.; Liu, R.-S. Tetrahedron Lett. 2005, 46, 7985-7988.

SCHEME 1. Rh(I)-Catalyzed Pauson-Khand-Type Reaction of Allenes

SCHEME 2. Carbonylative Ring-Closing Reaction of Allenyne 4

Method A: 1 equiv of $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}, \mathrm{MeCN}, 25^{\circ} \mathrm{C}, 8 \mathrm{~h}, 5$ (82\%) Method B: $5 \mathrm{~mol} \%$ of $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$, toluene, $90^{\circ} \mathrm{C}, 8 \mathrm{~h}$, CO (1 atm), 5 (62\%), 2-methylnaphthalene (8\%)
at $90^{\circ} \mathrm{C}$ to furnish $\mathbf{5}$ in 62% yield along with the byproduction of 2-methylnaphthalene (8%), the latter of which should arise from the Myers-Saito cycloaromatization ${ }^{6}$ of 4. They claimed that a low reaction temperature is required to avoid the formation of the undesired 2-methylnaphthalene (Scheme 2).

Thus, this investigation began in order to develop the catalytic procedure for the preparation of the 1 H -cyclopent [a]inden-2-one derivatives without production of 2-methylnaphthalene. According to the previously established met hod, ${ }^{2 e}$ the propargyl alcohol derivative 6 was treated with benzenesulfinyl chloride at $-78^{\circ} \mathrm{C}$ to afford the corresponding sulfinate 7 in a quantitative yield, subsequent exposure of which to $2.5 \mathrm{~mol} \%$ of $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ in toluene at $40{ }^{\circ} \mathrm{C}$ under an atmosphere of CO for 10 h effected the successive 2,3-sigmatropic rearrangement and carbonylative $[2+2+1]$ ring-closing reaction of the resulting allenyne species $\mathbf{8}$ to provide 8 -(phenylsulfonyl)-1 H -cyclopent $[a]$ inden-2-one (9) in 81% yield. The formation of 2-methylnaphthalene could not be detected in the reaction mixture (Scheme 3).

The catalytic preparation of the $1 H$-cyclopent $[a]$ inden-2one skeleton was realized, but the phenylsulfonyl group of 9 might not be essential for the synthesis of the target compound 3. The simpler $1 H$-cyclopent $[a]$ inden-2-one $(5)^{5}$ seemed to be the better substrate for conversion into the $\mathbf{3}$. Therefore, the chemical modification of compound 5 was first examined. Reduction of $\mathbf{5}$ with NaBH_{4} in the presence of CeCl_{3} afforded the allyl alcohol 10 in 78% yield, which was then oxidized with m-CPBA to produce the epoxy derivative 11 in 49% yield. The two trisubstituted olefin moieties of $\mathbf{1 0}$ with a similar reactivity might contribute to the moderate chemical yield of $\mathbf{1 1}$. The Lewis acid-catalyzed ring-opening of an epoxy group ${ }^{7}$ of $\mathbf{1 1}$ in the presence of cyclohexanol unexpectedly furnished 2-hydroxy-1,2,3,8-tetrahydrocyclo-pent[a]inden-3-one (12) in 83% yield. Although various

[^1]SCHEME 3. Preparation of 9

SCHEME 4. Attempt at Conversion of 5 into 13

conditions were screened, the desired cis-diol derivative $\mathbf{1 3}$ could not be obtained. The formation of $\mathbf{1 2}$ can tentatively be rationalized in terms of the intermediacy of the benzylic cation species 14a $(\mathrm{R}=\mathrm{H})$ followed by hydride transfer ${ }^{8}$ as shown in Scheme 4.

We assumed that the two olefin parts of 8-(phenylsulfo-nyl)-1 H-cyclopent $[a]$ inden-2-one (9) might be differentiated during epoxidation reaction, because one of them has an electron-withdrawing group, whereas the other does not. In addition, the phenylsulfonyl group of 9 would be expected to indirectly suppress the generation of the benzylic cation species (e.g., 14b). As a result, the stereoselective $\mathrm{S}_{\mathrm{N}} 2$-type ring-opening of the epoxy group at the benzylic position may dominate over the hydride transfer reaction via the benzylic cation species 14b. Based on these expectations, we tried to convert 9 into the cis-diol derivatives 17 (Scheme 5). Treatment of 9 with NaBH_{4} provided the allyl alcohol derivative 15, which was exposed to m-CPBA to give the desired 16 in 83% yield in a highly stereoselctive manner. The highly stereo- and regioselective ring-opening of the epoxy group ${ }^{7}$ of 16 was realized by the reaction of cyclohexanol in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in methylene chloride at $0{ }^{\circ} \mathrm{C}$ to furnish 17a in 70% yield. Other alcohols such as allyl alcohol, propargyl alcohol, and methanol also served as good nucleophiles to produce the corresponding diol derivatives $\mathbf{1 7 b} \mathbf{- d}$ in satisfactory yields, the RO groups of which

[^2]
SCHEME 5. Synthesis of Diol Derivatives 17 from 9

would be converted to a hydroxyl functionality in a later manipulation.

With the required diol derivatives $\mathbf{1 7}$ in hand, a further elaboration was carried out using the cyclohexyloxy derivative 17a (Scheme 6). Acetylation of the diol group under the standard conditions afforded the diacetoxy derivative $\mathbf{1 8}$ in 84% yield. The phenylsulfonyl group of $\mathbf{1 8}$ was removed by exposure to radical conditions ${ }^{9}$ with ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of AIBN, followed by acid treatment to provide 19 in 66% yield. The introduction of a double bond between C_{1} and C_{2} remains prior to completion of the preparation of the target structure. Upon treatment with DBU in DMF at $140^{\circ} \mathrm{C}$, compound 19 underwent an E2-type elimination to produce the desired 20, but the chemical yield was rather low (24%). A more powerful leaving group instead of an acetoxy group would improve the chemical yield. Thus, a multistep conversion of $\mathbf{1 9}$ into $\mathbf{2 0}$ with a higher overall yield was developed. Compound 19 was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$, and the resulting diol derivative was subsequently monotosylated with TsCl and ${ }^{n} \mathrm{Bu}_{2} \mathrm{SnO}^{10}$ to provide 21 in 86% yield. DBU treatment of an acetyl derivative, derived from 21, effected E2-type elimination resulting in the easy formation of $\mathbf{2 0}$ in 78% yield.

As the carbon framework $\mathbf{2 0}$ of $\mathbf{1}$ and $\mathbf{2}$ could be synthesized in a racemic form, the next objective was the preparation of the optically active 20 (Scheme 7). Although the asymmetric reduction of $\mathbf{9}$ was examined under several conditions such as CBS reduction, ${ }^{11}$ Noyori's asymmetric hydrogen transfer reaction, ${ }^{12}$ BINAL reduction, ${ }^{13}$ and Baker's yeast reduction, ${ }^{14}$ and so on, all efforts led to fruitless results. We next attempted the lipase-mediated optical resolution of the alcohol derivative 15. After screening various conditions, treatment of the racemic 15 with lipase AK Amano (Pseudomonas fluorescens) ${ }^{15}$ in isobutyl methyl ketone in the presence
(9) (a) Watanabe, Y.; Ueno, Y.; Araki, T.; Endo, T.; Okawara, M. Tetrahedon Lett. 1986, 27, 215-218. (b) Bew, S. P.; Sweeney, J. B. Synthesis 1994, 698. (c) Aboutayab, K.; Caddick, S.; Jenkins, K.; Joshi, S.; Khan, S. Tetrahedron 1996, 52, 11329-11340.
(10) (a) Martinelli, M. J.; Nayyar, N. K.; Moher, E. D.; Dhokte, U. P.; Pawlak, J. M.; Vaidyanathan, R. Org. Lett. 1999, 1, 447-450. (b) Martinelli, M. J.; Vaidyanathan, R.; Khau, V. V. Tetrahedron Lett. 2000, 41, 3773-3776.
(11) Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986-2012.
(12) (a) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 7562-7563. (b) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 25212522.
(13) Noyori, R. Pure Appl. Chem. 1981, 53, 2315-2322.
(14) Csuk, R.; Glänzer, B. I. Chem. Rev. 1991, 91, 49-97.
(15) (a) Toyooka, N.; Yoshida, Y.; Yotsui, Y.; Momose, T. J. Org. Chem. 1999, 64, 4914-4919. (b) Arrayás, R. G.; Alcudia, A.; Liebeskind, L. S. Org. Lett. 2001, 3, 3381-3383. (c) Taber, D. F.; Reddy, P. G.; Arneson, K. O. J. Org. Chem. 2008, 73, 3467-3474.

SCHEME 6. Synthesis of 3,3a-Dihydrocyclopent [a]indene 20 from 17a

SCHEME 7. Synthesis of (-)-16

of vinyl acetate as an acetyl donor at $60^{\circ} \mathrm{C}$ provided the best result by producing the chiral acetoxy derivative $\mathbf{2 2}{ }^{16}$ in 43% yield (67% ee) together with recovery of the chiral 15^{16} in 31% yield (82% ee). In addition to the unsatisfied ee values of both compounds 15 and 22, a fairly easy racemization of the chiral 15 (83% ee to 50% ee) was observed during its storage for a short time, although the mechanism for the racemization is still uncertain (Scheme 7).

Finally the epoxy alcohol derivative $\mathbf{1 6}$ was found to be a suitable substrate for the optical resolution method (Scheme 7). Indeed, the racemic 16 was exposed to lipase AK Amano (P. fluorescens) ${ }^{15}$ in toluene at $60{ }^{\circ} \mathrm{C}$ in the presence of vinyl acetate to afford (-)-23 in $\mathbf{4 3 \%}$ yield (95% ee) together with (+)-16 in 44% yield ($\geq 99 \%$ ee). The absolute stereochemistry of $(+)-\mathbf{1 6}$ was determined by application of the modified Mosher method. ${ }^{17}$ Calculation of

[^3]the value $[\Delta \delta=\delta(S)-\delta(R)]$ of the (S) - and (R)-MTPA esters, ${ }^{18}$ derived from $(+)-\mathbf{1 6}$, in their ${ }^{1} \mathrm{H}$ NMR spectra, confirmed its absolute stereochemistry as shown in Scheme 7. Thus, compound (-)-23 possessing the required absolute stereochemistry was then hydrolyzed with lipase PS Amano SD (Burkholderia cepacia) ${ }^{19}$ in a mixed solution of acetone and pH 7.0 buffer at $45^{\circ} \mathrm{C}$ to furnish (-)-16 in 90% yield. According to the procedures described in Schemes 5 and 6, the optically active alcohol (-)-16 was converted into (+)-17a, which was subsequently transformed into the final target molecule (+)-20 through (+)-18, (+)-19, and (+)-21, in turn.

In summary, we have synthesized a 3,3a-dioxygenated-3,3a-dihydrocyclopent $[a]$ indene skeleton, the core carbon framework of cyanosporasides A and B, in an optically active form. The most significant feature of this synthesis involves the previously developed $\mathrm{Rh}(\mathrm{I})$-catalyzed carbonylative ring-closing reaction of an allenyne as the key step. Further studies regarding the total synthesis of cyanosporasides A and B are now in progress.

Experimental Section

3-(2-Ethynylphenyl)prop-2-ynyl Benzenesulfinate (7). То a solution of $\mathbf{6}(500 \mathrm{mg}, 3.20 \mathrm{mmol})$ and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(1.67 \mathrm{~mL}, 9.90$ $\mathrm{mmol})$ in THF (25 mL) was added $\mathrm{PhS}(\mathrm{O}) \mathrm{Cl}(566 \mathrm{mg}, 3.52 \mathrm{mmol})$ in THF (5 mL) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h , quenched by addition of water, and extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was chromatographed with hexane $-\operatorname{AcOEt}(5: 1)$ to afford $7(905 \mathrm{mg}$, quant) as a pale yellow oil: IR 3308, 1479, $1445 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 7.81-7.79(\mathrm{~m}, 2 \mathrm{H})$, $7.56-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{dt}, 1 \mathrm{H}, J=9.4,3.8 \mathrm{~Hz}), 7.31-7.27(\mathrm{~m}$, $2 \mathrm{H}), 4.91(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 3.28$ (s, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 144.3, 132.6, 132.4, 132.2, 129.1, 128.5, 128.4, 125.4, 124.9, 124.8, 86.8, 86.1, 81.7, 81.3, 52.8; MS m/z $280\left(\mathrm{M}^{+}\right.$, 48.5); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S} 280.0558$, found 280.0557.

8-(Phenylsulfonyl)-1 H -cyclopent[a]inden-2-one (9). To a solution of $7(905 \mathrm{mg}, 3.23 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$ was added $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}\left(31.4 \mathrm{mg}, 8.08 \times 10^{-3} \mathrm{mmol}\right)$ at room temperature. The reaction mixture was stirred at room temperature under CO atmosphere for 4 h . The reaction mixture was concentrated and chromatographed with hexane-AcOEt (8:1) to afford 9 (810 $\mathrm{mg}, 81 \%$) as yellow needles: $\mathrm{mp} 186-187^{\circ} \mathrm{C}$ (AcOEt); IR 1720 , $1607,1323 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.04(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.68-7.55$ $(\mathrm{m}, 5 \mathrm{H}), 7.43(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.26-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H})$, 3.45 (s, 2H); ${ }^{13} \mathrm{C}$ NMR δ 203.9, 167.4, 150.1, 141.9, 140.6, 134.0. 133.6, 132.8, 129.6, 129.5, 129.3, 127.5, 126.9, 126.0, 121.9, 35.8; MS $m / z 308\left(\mathrm{M}^{+}, 57.9\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 70.11 ; \mathrm{H}$, 3.92. Found: C, 69.99, H, 3.97.

8-(Phenylsulfonyl)-1,2-dihydrocyclopent[a]inden-2-ol (15). To a solution of $\mathbf{9}(120 \mathrm{mg}, 0.390 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ was added a mixture of $\mathrm{NaBH}_{4}(37.1 \mathrm{mg}, 0.975 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ $(400 \mathrm{mg}, 1.05 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h , quenched by addition of water, and extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was chromatographed with hexane $-\mathrm{Et}_{2} \mathrm{O}$ (1:2) to afford 15 (77.7 $\mathrm{mg}, 64 \%)$ as yellow plates: $\mathrm{mp} 190-191{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR 3587 , $1317,1151 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.03-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.8 \mathrm{~Hz}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H})$, $7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 5.48-5.45(\mathrm{~m}, 1 \mathrm{H})$,

(18) See the Supporting Information

(19) (a) Bonomi, P.; Cairoli, P.; Ubiali, D.; Morelli, C. F.; Filice, M.; Nieto, I.; Pregnolato, M.; Manitto, P.; Terreni, M.; Speranza, G. Tetrahedron: Asymmetry 2009, 20, 467-472. (b) Brem, J.; Paizs, C.; Toşa, M. I.; Vass, E.; Irimie, F. D. Tetrahedron: Asymmetry 2009, 20, 489-496
3.66 (dd, 1H, $J=19.9,5.7 \mathrm{~Hz}$), 2.87 (dd, 1H, $J=19.9,1.3 \mathrm{~Hz}$), $2.14(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ 159.5, 148.3, 143.8, 141.7, $140.8,133.4,129.6,129.3,128.9,128.8,127.1,125.5,123.4,120.8$, 81.4, 36.1; MS $m / z 310\left(\mathrm{M}^{+}, 29.3\right)$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$ 310.0664, found 310.0666.
($2 R^{*}, 3 R^{*}, 3 \mathrm{a} S^{*}$)-3,3a-Epoxy-8-(phenylsulfonyl)-1,2,3,3a-tetrahydorocyclopent $[a]$ inden-2-ol (16). To a solution of $\mathbf{1 5}(220 \mathrm{mg}$, 0.710 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added $m-\mathrm{CPBA}(244 \mathrm{mg}$, 1.42 mmol) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 3 h at the same temperature, the reaction mixture was warmed to room temperature and then stirred for 10 h . The mixture was quenched by addition of saturated aqueous NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was chromatographed with hexane $-\mathrm{Et}_{2} \mathrm{O}$ (2:1) to afford 16 (192 mg , 83%) as a pale yellow foam: IR $3587,1321,1151 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ $8.02-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H})$, $7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}) 7.27-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.24-$ $7.21(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 3.65(\mathrm{dd}$, $1 \mathrm{H}, J=17.2,7.4 \mathrm{~Hz}), 2.49(\mathrm{dd}, 1 \mathrm{H}, J=17.2,6.8 \mathrm{~Hz}), 2.43(\mathrm{~d}, 1 \mathrm{H}$, $J=9.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 157.4,140.7,140.3,134.7,134.0,133.8$, $130.0,129.4,127.4,126.5,122.7,122.2,75.6,73.1,64.8,30.4$; MS $m / z 326\left(\mathrm{M}^{+}, 16.6\right)$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S} 326.0613$, found 326.0615.

General Procedure for Ring-Opening of Epoxide with Alcohols. To a solution of epoxide $16(16.3 \mathrm{mg}, 0.0500 \mathrm{mmol})$ and alcohol (0.50 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ $(0.019 \mathrm{~mL}, 0.15 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature until the complete disappearance of the starting material (monitored by TLC), quenched by addition of saturated aqueous NaHCO_{3}, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was chromatographed with hexane-AcOEt to afford diol 17. Chemical yields of $\mathbf{1 7}$ are summarized in Scheme 5.
($2 R^{*}, 3 R^{*}, 3 \mathrm{a} R^{*}$)-3a-Cyclohexyloxy-8-(phenylsulfony) $-1,2,3,3 \mathrm{a}-$ tetrahydrocyclopent $[a]$ indene-2,3-diol (17a): pale yellow foam; IR 3568, 3367, 1319, $1150 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.98-7.96(\mathrm{~m}, 2 \mathrm{H})$, $7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz})$, $7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~d}$, $1 \mathrm{H}, J=2.9 \mathrm{~Hz}$), $3.34(\mathrm{dd}, 1 \mathrm{H}, J=19.0,9.8 \mathrm{~Hz}), 2.91(\mathrm{dd}, 1 \mathrm{H}, J=$ $19.0,5.6 \mathrm{~Hz}), 2.83-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 1.87$ (s, $1 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.33-0.90(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 164.4$, $141.1,140.8,139.8,136.3,133.6,129.8,129.2,127.0,126.8$, $124.5,121.6,96.8,77.2,75.3,73.8,34.2,34.1,33.2,25.2,24.0$, 23.9; MS m/z $426\left(\mathrm{M}^{+}, 2.7\right)$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S}$ 426.1501, found 426.1504. $(+)-(2 S, 3 S, 3 \mathrm{a} S)-17 \mathrm{a}:[\alpha]^{22}{ }_{\mathrm{D}}+24.2(c=$ $0.47, \mathrm{CHCl}_{3}$).
($2 R^{*}, 3 R^{*}, 3 \mathrm{a} R^{*}$)-3a-Cyclohexyloxy-8-(phenysulfonyl)-1,2,3,3atetrahydrocyclopent $[a]$ indene-2,3-diyl Diacetate (18). To a solution of $17 \mathrm{a}(44.0 \mathrm{mg}, 0.103 \mathrm{mmol})$, pyridine $(0.1 \mathrm{~mL})$, and DMAP ($1.3 \mathrm{mg}, 0.010 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added $\mathrm{Ac}_{2} \mathrm{O}(0.032$ $\mathrm{mL}, 0.31 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at room temperature, quenched by addition of 10% aqueous HCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was chromatographed with hexane-AcOEt (4:1) to afford 18 (43.9 $\mathrm{mg}, 84 \%$) as colorless needles: $\mathrm{mp} 145-145.5^{\circ} \mathrm{C}$ (hexane$\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR 1749, 1321, $1147 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.03-8.01(\mathrm{~m}$, 2H), 7.62-7.51 (m, 4H), 7.34-7.27 (m, 2H), 7.17 (t, 1H, $J=7.6$ $\mathrm{Hz}), 6.03-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 3.47(\mathrm{dd}, 1 \mathrm{H}, J=$ $19.1,10.0 \mathrm{~Hz}), 3.09(\mathrm{dd}, 1 \mathrm{H}, J=19.1,6.5 \mathrm{~Hz}), 2.81-2.77(\mathrm{~m}, 1 \mathrm{H})$, $2.05(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 4 \mathrm{H})$, 1.15-0.89 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\delta 169.6,169.0,162.1,140.8,140.2$, $139.2,136.9,133.7,129.8,129.2,127.2,126.9,125.5,121.3,95.4$, $76.8,74.2,74.1,34.2,33.9,30.2,25.1,23.9,23.8,20.6,19.9 ;$ MS m / z $510\left(\mathrm{M}^{+}, 8.3\right)$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{~S} 510.1712$, found 510.1708. (+)-(2S,3S,3aS)-18: $[\alpha]^{23}{ }_{\mathrm{D}}+3.5\left(c=0.68, \mathrm{CHCl}_{3}\right)$.
($2 R^{*}, 3 R^{*}, 3 a S^{*}$)-3a-Cyclohexyloxy-1,2,3,3a-tetrahydrocyclopent $[a]$ indene-2,3-diyl Diacetate (19). To a solution of $18(30.0 \mathrm{mg}$, $0.0588 \mathrm{mmol})$ in benzene (1 mL) were successively added ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}$ ($51 \mathrm{mg}, 0.18 \mathrm{mmol}$) and AIBN ($2.2 \mathrm{mg}, 0.018 \mathrm{mmol}$) at room temperature. After being refluxed for 10 h , the reaction mixture was allowed to cool to room temperature, and 10% aqueous HCl was added. The reaction mixture was stirred for 14 h , quenched by addition of saturated aqueous NaHCO_{3}, and extracted with AcOEt. The extract was washed with water and brine dried and concentrated to dryness. The residue was chromatographed with hexane-AcOEt (6:1) to afford $19(14.4 \mathrm{mg}, 66 \%)$ as a colorless oil: IR $1741 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.31(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, 1 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.94$ (ddd, $1 \mathrm{H}, J=10.3$, $5.7,4.6 \mathrm{~Hz}), 5.60(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 3.19$ (ddd, $1 \mathrm{H}, J=17.0,10.3,2.4$ $\mathrm{Hz}), 2.95-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{dd}, 1 \mathrm{H}, J=17.0,5.7 \mathrm{~Hz}), 2.02(\mathrm{~s}, 3 \mathrm{H})$, $1.64-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.29(\mathrm{~m}$, $3 \mathrm{H}), 1.17-1.09(\mathrm{~m}, 3 \mathrm{H}), 1.01-0.93(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 169.8$, 169.7, 150.1, 146.7, 141.0, 128.9, 127.4, 125.1, 124.9, 120.8, 95.7, 77.8, 74.0, 73.0, 34.2, 34.1, 29.4, 25.4, 24.1, 24.0, 20.7, 20.3; MS $m / z 370$ ($\mathrm{M}^{+}, 16.9$); HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5} 370.1780$, found 370.1780 . $(+)-(2 S, 3 S, 3 \mathrm{a} R)-19:[\alpha]^{23}{ }_{\mathrm{D}}+43.7\left(c=0.26, \mathrm{CHCl}_{3}\right)$.
($2 R^{*}, 3 R^{*}, 3 \mathrm{a} S^{*}$)-3a-Cyclohexyloxy-3-hydroxy-1,2,3,3a-tetrahydrocyclopent $[a]$ inden-2-yl Benzenesulfonate (21). $\mathrm{K}_{2} \mathrm{CO}_{3}$ (17 $\mathrm{mg}, 0.12 \mathrm{mmol})$ was added to a solution of $\mathbf{1 9}(15.0 \mathrm{mg}, 0.0405$ $\mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred for 10 min , quenched by addition of water, and extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to leave the crude diol. To a suspension of crude diol, ${ }^{n} \mathrm{Bu}_{2} \mathrm{SnO}(3.0 \mathrm{mg}, 0.012 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(8.8 \mu \mathrm{~L}, 0.061 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added TsCl $(7.8 \mathrm{mg}, 0.041 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for 16 h , quenched by addition of water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was chromatographed with hexane-AcOEt (6:1) to afford 21 (15.5 $\mathrm{mg}, 86 \%$) as colorless needles: $\mathrm{mp} 140.5-141.5{ }^{\circ} \mathrm{C}$ (hexane); IR $3589,1369 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.85(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.37-7.33$ $(\mathrm{m}, 3 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H})$, $5.62-5.58(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{t}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 3.00(\mathrm{dd}, 1 \mathrm{H}, J=$ $17.3,9.8 \mathrm{~Hz}), 2.89-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{dd}, 1 \mathrm{H}, J=17.3,6.0 \mathrm{~Hz})$, $2.46(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.21$ $(\mathrm{m}, 3 \mathrm{H}), 1.13-1.07(\mathrm{~m}, 3 \mathrm{H}), 0.96-0.93(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $149.1,146.8,145.1,140.9,133.5,129.9,129.2,128.0,127.9,125.4$, $124.1,121.4,96.4,85.6,74.4,72.9,34.22,34.20,29.0,25.4,24.2$, 24.0, 21.7; MS m/z $440\left(\mathrm{M}^{+}, 33.3\right)$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S}$ 440.1657, found 440.1660. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S}$: C, 68.16; H, 6.41. Found: C, 67.79, H, 6.35. (+)-($2 S, 3 S, 3 \mathrm{a} R)-\mathbf{2 1}$: $[\alpha]^{18}{ }_{\mathrm{D}}+48.4\left(c=0.22, \mathrm{CHCl}_{3}\right)$.
($3 R^{*}, 3 a R^{*}$)-3a-Cyclohexyloxy-3,3a-dihydrocyclopent[a]inden-3-yl Acetate (20). To a solution of $21(5.5 \mathrm{mg}, 0.012 \mathrm{mmol})$, pyridine $(0.05 \mathrm{~mL})$, and $\operatorname{DMAP}(1.0 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added $\mathrm{AcCl}(10 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for 10 min , quenched by addition of water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried, and concentrated to leave crude acetate. To a solution of crude acetate in DMF $(0.5 \mathrm{~mL})$ was added DBU ($10 \mu \mathrm{~L}, 0.065 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 10 h , quenched by addition of water, and extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness.

The residue was chromatographed with hexane-AcOEt (6:1) to afford $20(2.9 \mathrm{mg}, 78 \%)$ as colorless needles: $\mathrm{mp} \mathrm{95-97}{ }^{\circ} \mathrm{C}$ (hexane); IR $1736 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.38(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz})$, $7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 6.79(\mathrm{~d}, 1 \mathrm{H}, J=5.6$ $\mathrm{Hz}), 6.54(\mathrm{dd}, 1 \mathrm{H}, J=5.6,2.5 \mathrm{~Hz}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~d}, 1 \mathrm{H}, J=2.5$ $\mathrm{Hz}), 2.88-2.82(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.33-$ $1.26(\mathrm{~m}, 3 \mathrm{H}), 1.12-0.94(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 170.4,154.9,148.0$, $142.0,140.4,131.6,129.1,125.5,125.4,123.2,121.9,94.5,77.2$, 72.0, 34.3, 34.2, 25.4, 24.3, 24.2, 20.8; MS $m / z 310\left(\mathrm{M}^{+}, 25.4\right)$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} 310.1569$, found 310.1569. (+)$(3 S, 3 \mathrm{a} S)-20:[\alpha]^{20}{ }_{\mathrm{D}}+431.9\left(c=0.11, \mathrm{CHCl}_{3}\right)$.

Optical Resolution of $(\pm)-\mathbf{1 6}$. To a solution of $(\pm) \mathbf{- 1 6}(60.0 \mathrm{mg}$, $0.184 \mathrm{mmol})$ and vinyl acetate $(0.5 \mathrm{~mL})$ in toluene $(2.5 \mathrm{~mL})$ was added lipase AK Amano $(120 \mathrm{mg})$ at room temperature. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h , passed through a filter paper, and concentrated to dryness. The residue was chromatograhed with hexane-AcOEt ($4: 1$ to $2: 1$) to afford $(+)-16(26.5 \mathrm{mg}, 44 \%, 99 \%$ ee) and (-)-23 ($33.0 \mathrm{mg}, 49 \%$, 95% ee).
($2 R, 3 R, 3 \mathrm{aS}$)-3,3a-Epoxy-8-(phenylsulfonyl)-1,2,3,3a-tetrahydorocyclopent $[a]$ inden-2-ol $((+)-16)$: pale yellow foam; $[\alpha]^{23}{ }_{D}$ $+28.1\left(c=0.39, \mathrm{CHCl}_{3}\right)$ for 99% ee. The enantiomeric excess of (+)-16 was determined to be 99% by chiral HPLC using Daicel Chiralpak IA; hexane $/{ }^{i} \operatorname{PrOH}=4: 1$ as an eluent; flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$; detector ultraviolet absorption at $254 \mathrm{~nm} ; t_{\mathrm{R}}=$ 12.4 min (major), 15.3 min (minor). The other analytical data for $(+)-16$ were found to be identical with those of the racemic 16.
(2S,3R,3aR)-3,3a-Epoxy-8-(phenylsulfonyl)-1,2,3,3a-tetrahydorocyclopent $[a]$ inden-2-yl Acetate ((-)-23): pale yellow foam: $[\mathrm{a}]^{23}{ }_{\mathrm{D}}-78.3\left(c=0.51, \mathrm{CHCl}_{3}\right)$ for 95% ee; IR 1742, 1323, 1153 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.02-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $7.64-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H})$, $7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.34$ (ddd, $1 \mathrm{H}, J=7.7,7.3,1.7 \mathrm{~Hz}$), 4.47 (d, $1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 3.68(\mathrm{dd}, 1 \mathrm{H}, J=17.1,7.7 \mathrm{~Hz}), 2.67(\mathrm{dd}, 1 \mathrm{H}, J=$ $17.1,7.3 \mathrm{~Hz}), 2.17$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR δ 170.4, 156.2, 140.6, 140.5, $135.8,133.9,133.8,130.1,129.5,127.4,126.7,122.8,122.4,75.7$, 72.6, 62.0, 27.1, 20.7; MS $m / z 368\left(\mathrm{M}^{+}, 9.3\right)$, HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~S} 368.0718$, found 368.0720 .
(2S,3S,3aR)-3,3a-Epoxy-8-(phenylsulfonyl)-1,2,3,3a-tetrahydorocyclopent $[a]$ inden-2-ol ($(-)$-16). To a solution of (-)-23 $(60.0 \mathrm{mg}$, 0.163 mmol) in pH 7.0 phosphate buffer $(0.3 \mathrm{M}, 0.5 \mathrm{~mL})$ and acetone (1.0 mL) was added lipase PS Amano SD (60.0 mg) at room temperature. The reaction mixture was stirred at $45^{\circ} \mathrm{C}$ for 24 h , quenched by addition of brine, and extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was chromatograhed with hexane$\operatorname{AcOEt}(2: 1)$ to afford (-) $\mathbf{- 1 6}(48.1 \mathrm{mg}, 90 \%)$ as a pale yellow foam: $[\alpha]^{22}{ }_{\mathrm{D}}-28.2\left(c=1.50, \mathrm{CHCl}_{3}\right)$.

Acknowledgment. This work was supported in part by a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, for which we are grateful.

Supporting Information Available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $\mathbf{7 , 9 - 1 2}, \mathbf{1 5}, \mathbf{1 6}, \mathbf{1 7 a}-\mathbf{d}, \mathbf{1 8 - 2 2}$, and (-)-23; characterization data for compounds $\mathbf{1 0} \mathbf{- 1 2}, \mathbf{1 7 b}-\mathbf{d}$, and (-)22. This material is available free of charge via the Internet at http://pubs.acs.org.

[^0]: *To whom correspondence should be addressed. Tel: +81-76-234-4411. Fax: +81-76-234-4410.
 (1) Oh, D.-C.; Williams, P. G.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. Org. Lett. 2006, 8, 1021-1024.
 (2) (a) Mukai, C.; Nomura, I.; Yamanishi, K.; Hanaoka, M. Org. Lett. 2002, 4, 1755-1758. (b) Mukai, C.; Nomura, I.; Kitagaki, S. J. Org. Chem. 2003, 68, 1376-1385. (c) Mukai, C.; Inagaki, F.; Yoshida, T.; Kitagaki, S. Tetrahedron Lett. 2004, 45, 4117-4121. (d) Mukai, C.; Inagaki, F.; Yoshida, T.; Yoshitani, K.; Hara, Y.; Kitagaki, S. J. Org. Chem. 2005, 70, 7159-7171. (e) Mukai, C.; Hirose, T.; Teramoto, S.; Kitagaki, S. Tetrahedron 2005, 61, 10983-10994. (f) Inagaki, F.; Kawamura, T.; Mukai, C. Tetrahedron 2007, 63, 5154-5160.
 (3) Inagaki, F.; Mukai, C. Org. Lett. 2006, 8, 1217-1220.
 (4) Inagaki, F.; Narita, S.; Hasegawa, T.; Kitagaki, S.; Mukai, C. Angew. Chem., Int. Ed. 2009, 48, 2007-2011.

[^1]: (6) Myers, A. G. Tetrahedron Lett. 1987, 28, 4493-4496. (b) Myers, A. G.; Kuo, E. Y.; Finney, N. S. J. Am. Chem. Soc. 1989, 111, 8057-8059. (c) Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I. Tetrahedron Lett. 1989, 30, 4995-4998. (d) Nagata, R.; Yamanaka, H.; Murahashi, E.; Saito, I. Tetrahedron Lett. 1990, 31, 2907-2910. (e) Myers, A. G.; Dragovich, P. S.; Kuo, E. Y. J. Am. Chem. Soc. 1992, 114, 9369-9386.
 (7) (a) Battistini, C. B.; Crotti, P.; Macchia, F. J. Org. Chem. 1981, 46, 434438. (b) Costantino, P.; Crotti, P.; Ferretti, M.; Macchia, F. J. Org. Chem. 1982, 47, 2917-2923. (c) Moberg, C.; Rákos, L.; Tottie, L. Tetrahedron Lett. 1992, 33 , 2191-2194. (d) Demyttenaere, J.; Vervisch, S.; Debenedetti, S.; Coussio, J.; Maes, D.; De Kimpe, N. Synthesis 2004, 1844-1848.

[^2]: (8) (a) Kita, Y.; Yoshida, Y.; Kitagaki, S.; Mihara, S.; Fang, D.-F.; Furukawa, A.; Higuchi, K.; Fujioka, H. Tetrahedron 1999, 55, 4979-4998. (b) Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 2000, 39, 569-573. (c) Kasal, A. Tetrahedron 2000, 56, 3559-3565. (d) Kasal, A.; Matyáš, L.; Buděšínský, M. Tetrahedron 2005, 61, 2269-2278. (e) Fernández-Mateos, A.; Coca, G. P.; González, R. R. Tetrahedron 2005, 61, 8699-8704. (f) Kasal, A.; Krištofíková, Z.; Buděšínský, M. Tetrahedron 2007, 63, 11355-11362.

[^3]: (16) The absolute stereochemistry was not determined. The stereochemistry described in Scheme 7 was deduced on the basis of the precedents. ${ }^{15}$
 (17) (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512-519. (b) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092-4096.

